		e.s.d(× 10 ³)			e.s.d(\times 10 ³)
C(1) - C(2)	1.535	15	C(1')-C(2')	1.510	12
C(1) - O(1)	1.399	24	C(2') - C(3')	1.550	15
C(2) - C(3)	1.545	8	C(2')-O(2')	1.409	16
C(2) - O(2)	1.460	15	C(3') - C(4')	1.488	15
C(3) - C(4)	1.531	22	C(3')-O(3')	1.423	10
C(3) - O(3)	1.393	17	C(4') - C(5')	1.489	9
C(4) - C(5)	1.511	14	C(4')-O(4')	1.450	18
C(4) - O(4)	1.448	4	C(5')-C(6')	1.543	19
C(5) - C(6)	1.510	23	C(6')-O(6')	1.417	10
C(6)–O(6)	1.467	18	C(1')-O(5')	1.416	12
C(1) - O(5)	1.406	15	C(5')–O(5')	1.417	12
C(5)-O(5)	1.472	7	C(1')-O(4)	1.415	11

Table 2. Bond lengths Å with their estimated standard deviations

these bonds, but there are a few alternative arrangements possible, and our intensity data are unfortunately not good enough to show the H positions on the Fourier maps. A curious feature of the structure is the distance 2.82 Å from O(3) to O(5') within the same molecule. Since Fig. 2 is a projection down the short *c* axis the levels of the successive screw axes are lower by 1.13 Å $(\frac{1}{2}a\cos\beta)$ as we go to the right. Each molecule is held at c=4.84 Å from its neighbour by the bonds O(2')–O(6'), O(3')–W, O(6')–O(2'), O(3)–O(6), O(6)–O(2). The bonds connecting the molecules in the *a* direction are: O(2')–O(6'), O(6)–O(2), O(6)–O(3) and O(1)–W and O(2)–W. In the direction of the *b* axis the bonds holding the molecules together are the bonds to the water molecule (W), and also the bonds O(2)–O(4') and O(1)–O(4'). There are in fact no less than sixteen hydrogen bonds fixing one molecule in place, and these are no doubt sufficient to account for the considerable hardness of the lactose crystal. The water molecule also plays a considerable part in this since it links together oxygens from four different lactose molecules. The bond angles at the water molecule are however rather variable, being from 82 to 126°.

References

BEEVERS, C. A. & EHRLICH, H. (1959). Z. Kristallogr. 112, 414.

BHUIYA, A.K. & STANLEY, E. (1963). Acta Cryst. 16, 981. GROTH, P. (1910). Chemische Krystallographie, Vol. 3, p. 450. HASSEL, O. & OTTAR, B. (1947). Acta Chem. Scand. 1, 929.

Acta Cryst. (1971). B27, 1325

The Crystal and Molecular Structure of 2,3,4,4a,9,9a-Hexahydro-2-methyl-9phenyl-1*H*-indeno[2,1-*c*]pyridine hydrobromide, C₁₉H₂₂NBr

BY F. H. Allen, D. ROGERS AND P. G. H. TROUGHTON

Chemical Crystallography Laboratory, Imperial College, London S.W.7, England

(Received 22 August 1968 and in revised form 28 May 1970)

A full three-dimensional X-ray study of 2,3,4,4a,9,9a-hexahydro-2-methyl-9-phenyl-1*H*-indeno[2,1-*c*]pyridine has been carried out using the hydrobromide, $C_{19}H_{22}NBr$. The crystals are monoclinic, spacegroup $P_{2_1/c}$, with a = 9.853, b = 15.099, c = 11.682 Å, $\beta = 105.81^{\circ}$, and four formula units per cell. The intensities of the 2873 independent reflexions with $\theta \le 65^{\circ}$ were measured using a Siemens automatic four-circle single-crystal diffractometer, a coupled $\omega: 2\theta$ scan, and a five-value measuring technique. Bromine was used as a phase-determining heavy atom, and structure solution, using the 2396 reflexions with intensities significantly greater than background, was straightforward. An absorption correction was applied, and block-diagonal least-squares refinement reduced *R* to 0.035. The accuracy of the diffractometer experiment is discussed in some detail. The suggested all-*cis* stereochemistry for the compound has been confirmed, and the geometry of the fused ring system is discussed. A notable feature is the shortness of the N—H---Br bond at 3.124 Å.

Introduction

Catalytic hydrogenation of the antihistamine phenindamine (tetrahydroindenopyridine, I) (Plati & Wenner, 1950), and of the dihydro-1*H*-indeno[2,1-*c*]pyridine (II) (Plati & Wenner, 1955), gave (III) which can be readily isomerized to (IV) using mild alkali (Leeming & Ham, 1968). Correlation of nuclear magnetic reso-

nance evidence with deuteration studies indicated that, although both (III) and (IV) contain three asymmetric centres, they are epimeric at C(9) only, the stereochemistry at C(10), C(11) remaining unchanged. The all-*cis* stereochemistry was proposed for (III), and this leaves the proton at C(9) in an exposed position; this would explain the ready epimerization since this proton is highly hindered in the thermodynamically more stable form (IV).

The n.m.r. spectra were, however, somewhat ambiguous, and in parallel with further chemical work (Ham & Leeming, 1969), we have studied the hydrobromides of (III) and (IV) using X-ray techniques. The relevant crystal data, obtained by visual estimation from oscillation and Weissenberg photographs (Cu Ka radiation), are shown in Table 1. Both samples were stable to Xirradiation over the period of this initial investigation. Although no measurements of optical rotation had been made, the symmetry of the (uniquely identifiable) space groups shows the racemic nature of the samples. Since (III) and (IV) were related chemically (by the wellestablished epimerization), the structure of either hydrobromide would suffice to establish the stereochemistry of both compounds. The hydrobromide of (III) (briefly referred to as PIPH in this paper) was chosen so that the geometry of this rather overcrowded molecule could be studied (if the all-cis stereochemistry was confirmed).

Table 1. Crystal data for the hydrobromides

Compound	III.HBr	IV.HBr
Formula	C10H22NBr	C10H22NBr
Habit	Laths	Prisms
System	Monoclinic	Monoclinic
М.,	344.3	344.3
a (Å)	9.85	11.05
b (Å)	15.05	7.45
c (Å)	11.60	19.30
β°	105.50	94.00
V (Å ³)	1648	1583
D_m (g.cm ⁻³)	1.38	1.41
$D_c (g.cm^{-3})$	1.39	1.44
Z	4	4
$\mu(\text{cm}^{-1})$	36.8	38.2
Space group	$P2_1/c$	$P2_1/c$
Crystallinity	Good	Excellent

Experimental

Crystals of PIPH are colourless laths with (100) prominent. A suitable specimen of dimensions $0.61 \times 0.20 \times 0.04$ mm was mounted with Araldite on a short quartz fibre set in dental sticky wax on a Stoë goniometer head. An off-line Siemens four-circle single-

Fig. 1. The scanning sequence employed in the 'five-value' measurement technique. $(t_1+t_5)=t_3=t_2=t_4$. $I_{net}=\frac{1}{2}[(I_1+I_3+I_5)-(I_2+I_4)]$.

crystal diffractometer (AED) was used throughout for data collection. The crystal was set using the rough cell data of Table 1, and accurate cell parameters were obtained by a least-squares technique applied to the optimum θ -values of some thirty Cu $K\alpha_1$ peaks.

Crystal data

2,3,4,4a,9,9a-hexahydro-2-methyl-9-phenyl-1H-indeno-[2,1-c]pyridine hydrobromide, C₁₉H₂₂NBr.

M = 344.3.

Monoclinic, $P2_1/c$, C_{2h}^5 . $a = 9.853 \pm 0.002$ Å, $b = 15.099 \pm 0.002$ Å, $c = 11.682 \pm 0.004$ Å, $\beta = 105.81 \pm 0.03^{\circ}$, V = 1672 Å³, $D_m = 1.38 \pm 0.03$ g.cm⁻³, $D_c = 1.367$ g.cm⁻³, for Z = 4 molecules per cell. $\mu = 36.22$ cm⁻¹ for Cu K\alpha radiation. F(000) = 712.

The intensities of the 2873 independent reflexions in the Cu sphere with $\theta \le 65^{\circ}$ were obtained using the 'five-value' measuring technique illustrated in Fig. 1. The mosaic spreads of some representative reflexions, within θ -limits of $8 \rightarrow 70^{\circ}$, were experimentally determined and the data used to allot appropriate scanranges $\Delta \theta_1$, $\Delta \theta_2$, to each reflexion. The machine approximates as closely as possible a constant-count-per-reflexion device (as recommended by Killean, 1967), except for the weakest intensities. This is effected by the automatic selection of the measuring time, per step of 0.01° , below a maximum set by the user, and the automatic introduction of attenuators into the incident beam for very strong reflexions. The majority of reflexions are thus recorded with a nearly uniform and optimum accuracy. A coupled $\omega: 2\theta$ ($\omega = \theta$) scan was used thoughout.

A strong reflexion, 080, was chosen as a 'reference' and measured once in every twenty reflexions. This enabled a scale-factor for each batch to be computed during data processing, nullifying fluctuations in the X-ray output or counter efficiency. A plot of the number of counts (N) given by the 'reference' against time (Fig. 2) shows that most measurements lie within a band of width 3σ , but indicates a gradual decline of ca. 5% during the two-week period. The latter is thought to be partly due to decreasing output from the Cu tube (over 3000 hours old), and partly to some radiation damage to the crystal.

A check on the crystal setting was provided by the data from axial 'control' reflexions, obtained after each batch of 100 five-value measurements. They were scanned with (a) full aperture (count N_t), (b) the insertion of a horizontal half-shutter (N_h), and (c) the insertion of a vertical half-shutter (N_v). An effective check was obtained by noting the values of N_h and N_v which should stay constant for any hkl, and also the ratios

Table 2. Comparison of $F^2(hk0)$ and $F^2(hk0)$

L	= 0				L, 1	• •				٤.	- 0			
н	ĸ	F²(HKo)	F ³ (HKo)) ∆F*	н	к	F ^a (HKo)	F²(₩Ko)	∆Fª	H	к	F²(HKo)	F²(ĤKo)	∆F³
10	•	430.01	425-82	1- 37	6		100.60	107.00	1.01	1	6	5.63	5.18	0.35
10	÷	70.61	16.99	4.60	6	6	485.1B	477.28	7.00	i	7	1408.08	1607.61	-8.64
10		37. 11	46.86	-8.53	6	-	8. 11	8.20	0.33		8	935.47	009.66	15.81
10		55-03	68.20	- 1. T.R	6	á	761-03	70 4. 00	-10.17	Ť	٥	83. 17	86	-1.06
10	- 1	07-43	05-01	-1.50	6	ò	162.64	172-00	-0.45	ĩ	IÓ	1 3 1 7 . 13	1 3 1 1 1 1 3	-16.00
10	- 7	40. 70	47.06	8. 34	6	10	184.17	187.21	-1.06	ĩ	11	111.66	111.54	12.12
TO	6	65.11	\$5.88	0.31	6	11	16.84	18.74	-1.00		13	177.23	190. 18	-11.15
		67.11	60.08	-7.07	6	12	0.07	14.68	-5.61	ĩ	11	12.33	10.09	3.11
~	Ť	120.84	337.51	3. 11	6	11	12.86	14.68	-1.83	1	10	143.93	147.35	-4.13
	-	40.17	47-31	7.06	6	1.	11.10	0.27	3-01	ĩ	15	1 17-05	1 17 8 1	0.13
~		104-07	480. 15	6.63	÷		228.81	210-10	18.11		īč	7.66	7.48	0.18
~	2	397997	160.48		-	÷	757.13	7 77 . 43	1 1. 70		17	6.44	6.15	0. 20
~	- 2	154.70	104.80		÷		374.11	366.11	7.00		-0	1781.08	1700-06	-8.08
ž	2	- 34-79		70.81	2	-	1162.53	1165.00	-3.46	ā	ī	7066.67	7043.25	36.43
ž	÷	05.06	107.48	-11.53	5	2	37 7. 84	317.15	- 4 - 21			4400.66	4107-88	1.78
2		93.90	8.04			- 7	085.44		-8.0.		-	100-78	101.11	
2			108.00		2	ŝ	416.61	393•4/				616.27	605.88	20.15
8	2	180.80	488.46	3.40	;	ž	7 .8	1 20 3. 61	-7.14	-	- 7	1021.48	1020-64	-16.16
ě		209200	2000.30	2.22	2			336.47	1.82		5	187.81	101-60	
	-	433.77	4-7+13	0.04	ş	~	-688	124.62				167.63	144.86	8.66
8	-	9.33	90.03		ş		126. 28	225-08	1.10	-	á	162.26	161.06	
					2		200 66	220 22		-	, i	1 14 . 70	248.48	10.48
	4	10.04	9+70	0.34	ş	**					- * *	- 37 - 7.7	53.08	
š	ž	47	49.40	- 20 20	2			10 8				7 735. 77	1 1 1	
š	ž	3 3.90	33.	-1.30	2	13		10.03	9.01			11.00	- 3- 4- 33	
	.7	409.91	474.01	-3.70	2	12	o• 3/	18				0.40	9.93	
		40.10	33.09	-0.01	2	• >	30.00	20,01						
	.9	10.30		-0.31	2		394033	3/ 3001			- 22		69.96	
2	10	0.40	0.30	··• 30	1		440.39		7.40		:2	8. 11	3/1/0	-0.04
		99.51	103.73	-4.33	2		.93.00	190674				6.84	6 66	0.04
-		39•47	40+14	-0.07	•		999.11				- /		6	
7	•	1203.90	1 304.47	-0.49	4	2	49: 3.01	-903.34				6480.47	664.9.48	-64.07
2		0.33	7.97	0.35		2	003.00				:			
7		0.50	0.10	2.34	?					:	-	140197	/ 39.90	
	3	493.01	500.07	-0,10	?		10,110,4	1043033		:	•	77.66	80.07	31099
~	2	1215.77	1219.70	- 3+99			75 30 34	770.00	-10.75	:	2	511.40	530.05	
1	2	440.01	449.30	-0.77	?			/•99		:			540.00	
7	č	32.05	30.34	-7+47	1	10	344.93	330.10	-/• -3	:	č	687.98	500.00	
1		770.00	773.03	4+97		**	4//•91	4010 39	- 30 40	:				
1		+01+4/	411.70	-/• •/	2			9.03		:		1399.00		
1	.9	10.31	17.30	-0.99	1	13	441.97	330.34	. 3. 03		-2	73.59	74.44	
7	10	41.45	30.35	1.00	1	**	320.34	314.50	4 30 70	1		40.03	32.00	/.01
1		0.01	8.00		1	12	37+90	30.00	1.90					-1.74
1	13	194-42	207.59	-1 3. 17	4	10	11.39	31+43	-10.14			10.01	9.20	10.01
6	+ 3	7.10	0.04	o 34	3	•	4750+75	4/10013	40.03	-	43		225.04	-10.31
6			= 35.00	• 33	3		477.90	14/06 30	7.00	:		332.40	335.01	- 3. 3.
6	-	-5 - 39	+1+45	1+94	3	-	- 3-91	7 74 7 . 6 9	41-04	:		339.90	304.70	-4.00
6	-	47•43	44.23	3.31	5	3	1 30 3 6 1 3	1 341.00	41.04		10	44.50	17.77	2.01
š	3	39 . 3 3	338.14	1.00	3	4	1014.90	1/94073	20023	•	+7	40 • 79		-4.99
•	- 4	1319+44	1310.12	2.632	3	•	4444990	- 3/ 4 + / 7	73449					

A C 27B - 4*

 N_h/N_t , N_v/N_t , which should be equal for reflexions hkl, $h\bar{k}\bar{l}$. The values were checked periodically and minor adjustments made to the goniometer arcs when necessary.

The raw intensities were evaluated using the formula quoted in Fig. 1; reflexions whose net count was less than 2.58 σ_I , *i.e.* below the 99% confidence level, were treated as 'unobserveds' and given intensities equal to

Table 3. Final observed and calculated structure factors for those reflexions with intensities significantlygreater than the background level

Column headings are L, $10|F_o|$, $10F_c$.

The reflexions omitted for suspected extinction were: $\frac{h}{k} \frac{k}{l} = \frac{10E}{10E} = \frac{10E}{10E}$

		$\begin{array}{ccc} h & k & l \\ 1 & 3 & 0 \\ 2 & 2 & 1 \end{array}$	10 <i>F</i> 0 1525 1585	$10F_c$ - 1625 - 1747	sin θ/λ 0·11248 0·14159		
9 9	2 244 241 2 244 241	-7.94 -7.94 -7.94 -7.94 -7.94 -7.94 -7.94 -7.94 -7.94 -7.94 -7.94 -7.94 -7.94 -7.94 -7.94 -7.94 -7.94 -7.94 -7.94 -7.95	-4.1.1. -2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	$\begin{array}{c} -4,11,1,1\\ 2 \\ 3 \\ 4 \\ 2 \\ 1 \\ 2 \\ 2$	7 12 -22<	• 177 -140 • 177 -140 • 177 -140 • 177 -140 • 127 -157 • 127 -157 • 127 -157 • 127 -157 • 127 -157 • 127 -157 • 127 -157 • 127 -157 • 127 -157 • 127 -157 • 127 -157 • 127 -157 • 127 -157 • 127 -157 • 127 -157 • 127 -157 • 127 -157 • 127 -157 • 127 127 • 127 127 • 127 127 • 127 127 • 127 127	3 05 -17 3 05 -175 5 5127 -1647 7 2255 -2161 10 216 -2161 11 -3.711 457 2255 -2101 -3.711 1 2253 -217 2 2357 -107 2 2357 -107 3 100 -107 2 2357 -107 3 100 -107 3 100 -107 3 100 -107 3 100 -107 3 100 -107 3 100 -107 3 100 -107 3 100 -107 3 100 -107 3 100 -107 3 100 -107 3 100 -107 3 100 -107

-2:11.1 1:44 - 122.4 1:44 - 122.4 1:44 - 122.4 1:45 - 123.4 1:55 - 124.7 1:55 -	-2:00.1 1 500 -200 2 107 -210 3 210 -210 5 210 -210 5 210 -210 5 210 -210 7 211 -10 2 11 130 -100 5 213 -200 5 213 -200 11 130 -100 5 213 -200 5 213 -200 5 213 -200 5 213 -200 5 213 -200 7 211 -10 2 130 -100 9 122 -200 10 -00 9 122 -200 10 -00 10 -00	-1.21. 1 007 41 3 131 3 121 104 4 121 104 4 121 104 5 1206 -2010 1 131 1 007 -114 2 106 -104 1 1351 -161 1 107 107 -171 1 109 1271 1 2 10	$\begin{array}{c} 4 & 177 & -185 \\ 5 & 748 & -411 \\ 5 & 748 & -411 \\ 7 & -118 \\ -110 & -118 \\ -110 & -118 \\ -111 & -118 \\ -118 \\ -111 & -11$	$\begin{array}{c} 3 & 555 & -51.6 \\ 4 & 515 & 62.6 \\ 5 & 315 & 62.6 \\ 7 & 151 & 102 \\ 7 & 151 & 102 \\ 10 & 112 & 112 \\ 112 & 112 & -2163 \\ 113 & 114 & -2163 \\ 113 & 114 & -2163 \\ 114 & 114 & -2163 \\ 115 & 114 & -2163 \\ 116 & 114 & -2163 \\ 116 & 114 & -2163 \\ 118 & 114 & -2163 \\ 118 & 114 & -2163 \\ 118 & 114 & -2163 \\ 118 & 114 & -2163 \\ 118 & -116 & -1163 \\ 128 & -586 & -586 \\ 10 & 1077 & -176 \\ 12 & 2166 & -467 \\ 13 & 2167 & -716 \\ 13 & 2167 & -726 \\ 13 & 217 & -726 \\ 23 & 217 & -726 \\ 23 & 217 & -726 \\ 23 & 217 & -726 \\ 23 & 217 & -726 \\ 23 & 217 & -726 \\ 23 & 217 & -726 \\ 24 & 266 & -726 \\ 25 & 276 & -726 \\ 27 & 276 & -720 \\ 27 & 276 & -720 \\ 27 & 276 & -720 \\ 27 & 276 & -720 \\ 27 & 276 & -720 \\ 27 & 276 & -720 \\ 27 & 276 & -720 \\ 27 & 276 & -720 \\ 27 & 276 & -720 \\ 27 & 276 & -720 \\ 27 & 276 & -720 \\ 27 & 276 & -720 \\ 27 & 276 & -720 \\ 27 & 276 & -720 \\ 27 & 276 & -720 \\ 27 & 276 & -720 \\ 27 & 276 & -720 \\ 27 & 276 & -720 \\ 27 & 276 & -7$	6 102 105 1 105 107 2 105 107 3 107 200 3 107 200 3 107 200 3 107 200 4 107 107 7 107 107 7 107 107 10 107 107 10 107 107 10 107 107 10 107 107 10 107 107 10 107 107 10 107 107 10 107 107 10 107 107 10 107 107 10 107 107 10 107 100 10 107 100 10 107 100 10 107 100 10	7 144 151 151 9 917 140 151 10 147 140 147 11 147 140 147 11 147 140 147 11 147 140 147 11 147 140 147 12 977 140 147 13 147 140 147 14 147 140 147 11 147 140 147 11 147 140 141 11 147 140 141 11 147 140 141 11 140 141 141 11 140 141 141 11 140 141 141 11 140 141 141 11 141 141 141 11 141 141 141 12 144 141 141 141 141 141 </th <th>3 82 70 5 322 323 723 6 323 723 724 7 230 725 724 8 723 724 724 9 40 93 124 9 73 724 724 9 73 724 724 9 73 724 724 9 73 724 724 9 73 734 734 9 734 736 734 9 734 736 734 9 734 734 734 9 734 734 734 1334 734 734 734 1334 734 734 734 1334 734 734 734 1334 734 734 734 1334 734 734 734 1334</th> <th>17 1 99 2 2 4 1 553 -556 2 1 553 -556 -556 -556 3 5 5 -566 -553 -566 4 5 5 -566 -553 -566 7 6 5 -566 -553 -566 7 6 5 -566 -553 -566 7 6 5 -567</th> <th>2124 0 190 - 190</th>	3 82 70 5 322 323 723 6 323 723 724 7 230 725 724 8 723 724 724 9 40 93 124 9 73 724 724 9 73 724 724 9 73 724 724 9 73 724 724 9 73 734 734 9 734 736 734 9 734 736 734 9 734 734 734 9 734 734 734 1334 734 734 734 1334 734 734 734 1334 734 734 734 1334 734 734 734 1334 734 734 734 1334	17 1 99 2 2 4 1 553 -556 2 1 553 -556 -556 -556 3 5 5 -566 -553 -566 4 5 5 -566 -553 -566 7 6 5 -566 -553 -566 7 6 5 -566 -553 -566 7 6 5 -567	2124 0 190 - 190
114 - 200 122 - 125 213 - 201 312 - 201 312 - 201 312 - 201 463 - 400 463 - 400 463 - 400 463 - 400 463 - 400 471 - 14 374 - 321 330 - 321 4642 - 529 530 - 529 547 - 529 549 - 400 549 - 229 549 - 229	$\begin{array}{c} -1.0 \text{dt} \\ < 537 \\ -516 \\ -568 \\ -568 \\ -568 \\ -564 \\ -1.1 \text{dt} \\ 1 \\ 2 \\ 647 \\ -956 \\ 3 \\ 647 \\ -956 \\ -516 $	7 744 - 79 8 145 - 155 9 273 282 10 06 - 62 11 2.4 216 -11-94 1 163 172 3 477 - 479 * 150 - 136 7 511 - 530 9 172 - 161 10 44 - 115 -11-10-1 11 275 2886 * 10 9 -11-10-1 * 150 - 130 * 150 - 150 *	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 244 102 1 245 102	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 174 & -164 \\ 5 & 0.5 & -0.52 \\ 0 & 1141 & -157 \\ 1 & 114 & -157 \\ 1 & 115 & -155 \\ 1 & 244 \\ 24$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4 67, 5 49 6 63 9 61 9 264 10 54

Table 3 (cont.)

this 'confidence' threshold. The data were corrected for Lorentz and polarization factors, and placed on a common arbitrary scale. The absolute scale was obtained at a later stage by comparing $\sum |F_o|$ and $\sum |F_c|$.

124567 4901

12345678901113

12345678910112

1234567891011

123456789JJ

124567932

The equivalent reflexions in the hk0 zone (*i.e.* $\bar{h}k0$) were also scanned during the same run and treated in a similar manner. This provided a check on the stability and statistical accuracy of the machine during the whole experiment, since the data were spread evenly over the whole collection period. A comparison of $F^2(hk0)$ and $F^2(\bar{h}k0)$ is shown in Table 2; these values have not been corrected for absorption. An 'agreement factor' of the form:

$$R' = \frac{2\sum |F^{2}(hk0) - F^{2}(\bar{h}k0)|}{\sum F^{2}(hk0) + \sum F^{2}(\bar{h}k0)}$$

had the low value of 0.012. This was a reflexion not only of the reproducibility of the machine, but also of the very regular crystal cross-section which caused symmetrical absorption errors.

Structure solution and refinement

The position of the bromine ion was obtained from the Harker sections $(x \ \frac{1}{2} \ z; 0 \ y \ \frac{1}{2})$ of a three-dimensional Patterson map based on the 2396 'observed' data. Structure factors were calculated using the phase-angles (0 or π) indicated by this position, together with an estimated *B*-factor of 3.0 Å²; after rescaling *R* was 0.437. The first electron-density map revealed the positions of all 21 non-hydrogen atoms. The coordinates were optimized using the parabola method (Booth,

1948), and a bead model showed chemically sensible geometry.

Refinement began with six cycles of unweighted block-diagonal least-squares approximations using estimated *B*-factors of 3.5 Å^2 for all atoms except Br, and scattering factors (International Tables for X-ray Crystallography, 1962) appropriate to Br^- and N^+ ; R fell to 0.151. A difference map, using $(F_o - F_c)$ as Fourier coefficients, showed no spurious features but revealed some anisotropy in the structure. The temperature factors were converted to their anisotropic equivalent β_{ii} values in the equation:

$$f = f_0 \exp[-(\beta_{11}h^2 + \beta_{22}k^2 + \beta_{33}l^2 + 2\beta_{12}hk + 2\beta_{13}hl + 2\beta_{23}kl)],$$

R fell to 0.086 after four cycles. Parameter shifts for N⁺ and Br⁻ were high and these alone were varied for two cycles of full-matrix refinement which reduced Rto 0.080.

The hydrogen atoms were now included in calculated positions, which were refined, with fixed B-factors 0.5 Å² greater than the final value for the atom to which they were bonded. Unweighted block-diagonal refinement continued to R=0.057. An interesting feature was the movement of H(20) [attached to N(2)] towards N^+ ; this recurred later and is discussed below.

The data were corrected for absorption using a program kindly supplied by Dr B. J. Brandt of the University of Stockholm. It employs the vector method outlined, and initially programmed, by Coppens, Leiserowitz & Rabinovich (1965), to calculate the directions of the incident and diffracted rays, and also the Gaus-

2.0

sian integration technique described by Busing & Levy (1957). A variety of grid sizes were tried using a sample batch of data, and one of $6 \times 6 \times 6$ chosen as the smallest possible without significant loss of accuracy; the correction factors varied by ca. 1.5% when the size was increased to $10 \times 10 \times 10$.

The unweighted refinement, from which two reflexions (130, 221) were omitted for suspected extinction. continued smoothly to R=0.038; the great improvement in R was a reflexion of the very anisotropic shape of the crystal, and shows the danger of ignoring absorption effects even when μ is relatively small.

H(20) was now only 0.476 Å from N⁺, and nitrogen. and to a lesser extent bromine, showed oscillatory shifts which prevented successful convergence. A further difference map, from which only the non-hydrogen atoms were subtracted, showed a rather diffuse peak of height 0.4 e.Å-3 at ca. 0.6 Å from N+. This was attributed (see Discussion below) to the centre of gravity of the hydrogen electron density and that due to the nitrogen lone pair. In the absence of facilities for the application of aspherical scattering factors (Dawson, 1964) it was decided to attempt to attain convergence by removing H(20), and by redefining the valence state of nitrogen as N⁰. The scheme was successful. and, following the application of a correction for dispersion at Br⁻ using the values $\Delta f' = -0.9$, $\Delta f'' = 1.5$ (Dauben & Templeton, 1955), the refinement was concluded at R=0.035. The shifts in non-hydrogen atom parameters were all less than 0.15 of the corresponding estimated standard deviation on the final cycle.

The parameters were refined to convergence twice

during this work, the first time being before the application of absorption and dispersion corrections when R=0.057. Comparison of the two final sets of values shows that the effects of these two corrections can be summarized as follows:

All heavy atoms (except H) $< |\Delta x| > = 0.00050$ $|\Delta x|_{\rm max} = 0.00134 (3.1\sigma)$ $<|\Delta y|> = 0.00015$ $|\Delta y|_{\rm max} = 0.00044 \ (1.6\sigma)$ $<|\Delta z|> = 0.00045$ $|\Delta z|_{\max} = 0.00133 (3.0\sigma)$ $|\Delta \beta_{11}|_{\rm max} = 0.00092$ $< |\Delta \beta_{11}| > = 0.00032$ $|\Delta \beta_{22}|_{max} = 0.00054$ $< |\Delta \beta_{22}| > = 0.00028$ $< |\Delta \beta_{33}| > = 0.00037$ $|\Delta \beta_{33}|_{\rm max} = 0.00118$ $|\Delta \beta_{12}|_{max} = 0.00038$ $< |\Delta \beta_{12}| > = 0.00013$ $< |\Delta \beta_{13}| > = 0.00024$ $|\Delta \beta_{13}|_{\rm max} = 0.00081$ $< |\Delta \beta_{23}| > = 0.00018$ $|\Delta \beta_{23}|_{\rm max} = 0.00153$

Hydrogen atoms (excluding H_2O)

$< \Delta x >$	= 0.0097	$ \Delta x _{\max}$	$= 0.0422 (8.0\sigma)$
$\langle \Delta y \rangle$	=0.0039	$ \Delta y _{\max}$	$=0.0122 (3.6\sigma)$
$< \Delta z >$	= 0.0089	$ \Delta z _{\rm max}$	$=0.0386 (8.8\sigma)$

Fig. 3. A molecule of PIPH in *b*-axis projection.

On the whole these were larger than we had expected.

An analysis of the final structure -factor list (Table 3) showed that $\langle |F_o| - |F_c| \rangle^2 \rangle$ was almost constant over the most populated ranges of $|F_o|$; weighted refinement was therefore not attempted. The final positional and anisotropic thermal parameters, shown in Tables 4, 5 and 6, were used to check those reflexions whose intensities were indistinguishable from the background level, and which were not included in the refinement. In general $|F_c|$ was less than $|F_o|$ except for six reflexions which showed surprising disagreement. This was eventually traced to an error in the generation of the diffractometer steering tape: the Eulerian angle χ for these reflexions (and only these reflexions) became greater than 90° , a value not attainable on the AED, and the equivalent reflexions should have been studied; the program switch was incorrectly set and the machine was therefore set up to explore a blank area of reciprocal space. The loss of the crystal prevented the correct measurement of these six reflexions at this late stage.

Table 4. Final fractional coordinates for the non-hydrogen atoms

Estimated standard deviations are given in parentheses

	$x(\sigma_x)$	$y(\sigma_y)$	$z(\sigma_z)$
Br	0.15327 (5)	0.38727(3)	-0.55468(3)
C(1)	0.25447 (36)	0.29738 (23)	-0.22910(30)
N(2)	0.11316 (29)	0.31338 (19)	-0.31627(25)
C(3)	0.03116 (36)	0.37890 (28)	-0.26531(33)
C(4)	0.10613 (39)	0.46663 (26)	-0.25155(33)
C(5)	0.20427 (38)	0.48839 (25)	0.02985 (34)
C(6)	0.24945 (42)	0.47413 (27)	0.15154 (35)
C(7)	0.36722 (44)	0.42385 (27)	0.20009 (33)
C(8)	0.44327 (38)	0.38590 (24)	0.12823 (31)
C(9)	0.46669 (33)	0.37161 (21)	-0.09029(29)
C(10)	0.34228 (33)	0.38194 (22)	-0.20521 (28)
C(11)	0.25779 (34)	0.46072 (22)	-0.17475 (30)
C(12)	0.27930 (33)	0.45007 (21)	-0.04239 (29)
C(13)	0.39820 (33)	0.39916 (21)	0.00620 (28)
C(14)	0.54683 (34)	0.28535 (23)	-0.07511 (31)
C(15)	0.51382 (43)	0.21452 (25)	-0.01130 (38)
C(16)	0.59401 (52)	0.13598 (27)	0.00262 (41)
C(17)	0.70561 (49)	0.12926 (32)	-0.04910 (44)
C(18)	0.73644 (44)	0.19828 (32)	-0.11364(45)
C(19)	0.65845 (39)	0.27651 (28)	-0.12677(37)
C(20)	0.03511 (46)	0.22815 (29)	-0.34909 (38)

Table 5. Final anisotropic thermal parameters (β_{t1}) for the non-hydrogen atoms

	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
Br	0.01527	0.00569	0.00609	0.00283	0.00285	0.00052
C(1)	0.00848	0.00330	0.00573	0.00053	-0.00034	0.00017
N(2)	0.00834	0.00332	0.00563	0.00026	-0.00096	0.00009
C(3)	0.00704	0.00561	0.00751	0.00079	-0.00023	-0.00015
C(4)	0.00946	0.00429	0.00706	0.00218	-0.00020	0.00025
C(5)	0.00874	0.00370	0.00872	-0.00049	0.00295	-0.00072
C(6)	0.01279	0.00495	0.00790	-0·00218	0.00206	-0.00312
C(7)	0.01444	0.00455	0.00600	-0.00237	0.00241	0.00001
C(8)	0.01026	0.00306	0.00683	-0.00112	0.00005	0.00074
C(9)	0.00631	0.00290	0.00666	-0.00002	0.00088	0.00004
C(10)	0.00761	0.00304	0.00545	0.00053	0.00157	0.00051
C(11)	0.00783	0.00269	0.00641	0.00073	0.00109	0.00070
C(12)	0.00704	0.00262	0.00631	-0.00039	0.00113	-0.00018
C(13)	0.00726	0.00226	0.00604	-0.00057	0.00062	-0.00001

2

Table 5 (cont.)

	β_{11}	β_{22}	β33	β_{12}	β_{13}	β_{23}
C(14)	0.00644	0.00318	0.00737	0.00064	-0.00073	- 0.0007
C(15)	0.01167	0.00332	0.00986	0.00081	-0.00049	-0.00016
C(16)	0.01929	0.00323	0.01085	0.00169	-0.00300	-0.00020
C(17)	0.01425	0.00576	0.01362	0.00470	-0.00567	-0.0037
C(18)	0.00968	0.00662	0.01413	0.00266	-0.00008	-0.0038
C(19)	0.00839	0.00515	0.01012	0.00064	0.00066	-0.00218
C(20)	0.01386	0.00474	0.00888	-0.00172	-0.00297	0.0001

Table 6. Refined fractional coordinates for the hydrogen atoms (estimated standard deviations in parentheses)

The numerical designation of hydrogen atoms is made up of the number of the C or N atom to which they are bonded, together with a serial number starting from zero.

	$x(\sigma_x)$	$y(\sigma_y)$	$z(\sigma_z)$
H(10)	0.2336 (43)	0.2702 (28)	-0.1660(37)
H(11)	0.2983 (43)	0.2533 (28)	-0.2673(36)
H(20)	Position not	accurately defined,	see Discussion
H(30)	0.0201 (47)	0.3525 (30)	-0·1899 (39)
H(31)	-0.0634 (46)	0.3842(30)	-0.3221(38)
H(40)	0.0580 (46)	0.5054 (31)	-0.2191 (39)
H(41)	0.1079 (47)	0.4879 (31)	-0.3260 (39)
H(50)	0.1258 (44)	0.5249 (29)	0.0005 (38)
H(60)	0.1967 (46)	0.4933 (31)	0.2058 (39)
H(70)	0.3976 (46)	0.4143 (30)	0.2788 (39)
H(80)	0.5264 (44)	0.3497 (29)	0.1629 (37)
H(90)	0.5289 (43)	0.4116 (27)	-0.0986(36)
H(100)	0.3771 (42)	0.3954 (28)	-0.2739(36)
H(110)	0.3011 (43)	0.5145 (28)	-0.1886(36)
H(150)	0.4309 (47)	0.2174 (31)	0.0172 (40)
H(160)	0.5703 (51)	0.0879 (33)	0.0444 (43)
H(170)	0.7650 (53)	0.0745 (34)	-0.0415(44)
H(180)	0.8148 (52)	0.1954 (34)	-0.1552(44)
H(190)	0.6762 (48)	0.3211 (31)	-0.1706(40)
H(200)	0.0908 (50)	0.1969 (32)	-0.3890(42)
H(201)	-0.0608(50)	0.2442 (33)	-0.4033 (42)
H(202)	0.0352(50)	0.1971(32)	-0.2741(43)

Discussion of the structure

The [010] projection of the molecule (Fig. 3) shows that the three protons at C(9), C(10), C(11), are all cis; the proposed stereochemistry was therefore confirmed and structural formulae (III) and (IV) are correct.

The bond lengths and valence angles (Tables 7 and 8) are subdivided into two groups: those involving C and N, and those involving hydrogen atoms. (Libration corrections were not applied for lack of a relevant program.) The average $C(sp^3)$ - $C(sp^3)$ and C-C(aromatic)distances are 1.531 ± 0.005 and 1.513 ± 0.005 Å respectively, not significantly different from the accepted averages of 1.537 and 1.505 Å (Sutton, 1965). The average C-N(quaternary) distance of 1.499 ± 0.005 Å is a little higher than the cited average of 1.479 Å (Sutton, 1965), but comparable values are quoted for DL- β -prodine hydrobromide (Ahmed, Barnes & Masironi, 1963) and hydrochloride (Ahmed & Barnes, 1963) (1.495 Å in each case), piperazine hydrochloride (1.50 Å, Rérat, 1960), and in the piperidine rings of certain alkaloids (Van den Hende & Nelson, 1967; Peerdeman, 1956).

Table 7. Intramolecular bonded distances, r, together with their estimated standard deviations (σ_r)

(a) Bonds not involving hydrogen atoms

	$r(\sigma_r)$	-	$r(\sigma_r)$
C(1) - N(2)	1.504 (4) Å	C(9) - C(13)	1·521 (5) Å
C(1) - C(10)	1.525 (5)	C(9) - C(14)	1.508 (5)
N(2) - C(3)	1.499 (5)	C(10) - C(11)	1.548 (5)
N(2) - C(20)	1.495 (5)	C(11) - C(12)	1.511 (5)
C(3) - C(4)	1.504 (6)	C(12) - C(13)	1.387 (4)
C(4) - C(11)	1.522 (5)	C(14) - C(15)	1.392 (6)
C(5) - C(6)	1.386 (5)	C(14) - C(19)	1.398 (6)
C(5) - C(12)	1.390 (6)	C(15) - C(16)	1.410 (6)
C(6) - C(7)	1.373 (6)	C(16) - C(17)	1.395 (8)
C(7) - C(8)	1.392 (6)	C(17) - C(18)	1.368 (7)
C(8) - C(13)	1.387 (5)	C(18)–C(19)	1.395 (6)
C(9)—C(10)	1.560 (4)		

(b) Bonds involving hydrogen atoms

The C-H bond lengths are given in groups classified according to the degree of substitution of the carbon atom; the average r in each group is compared with the spectroscopic average (Sutton, 1965).

C(aromatic)-H		C(disubstituted)-H				
C(5)—H(50)	0·93 (4) Å	C(1)—H(10)	0·91 (5) Å			
C(6)—H(60)	0.97 (5)	C(1) - H(11)	0.97 (5)			
C(7)—H(70)	0.90 (4)	C(3) - H(30)	1.00 (5)			
C(8)H(80)	0.98 (4)	C(3) - H(31)	0.99 (4)			
C(15)-H(150)	0.96 (5)	C(4) - H(40)	0.90 (5)			
C(16)-H(160)	0.94 (5)	C(4) - H(41)	0.93 (5)			
C(17)-H(170)	1.00 (5)	r=0.9	95 Å			
C(18)-H(180)	1.02 (6)	Spect. ave. $= 1.0$)73 Å			
C(19)-H(190)	0.89 (5)	-				
r=0.9	99 Å	C(trisubstituted)H			
Spect. ave. $=1.0$)84 Å	C(9) - H(90)	0·88 (4) Å			
		C(10) - H(100)	0.98 (5)			
C(methyl)-H		C(11) - H(110)	0.95 (4)			
C(20)-H(200)	0∙94 (5) Å	r = 0.9	94 Å			
C(20)-H(201)	1.01 (4)	Spect. ave. $= 1.0$	070 Å			
C(20)-H(202)	0.99 (5)	-				
r=0.9	98 Å					

Spect. ave. = 1.096 Å

The carbon atoms of both benzene rings are closely coplanar, average deviations $(\langle |d| \rangle)$ from the mean planes being 0.0022 Å for the fused ring and 0.0043 Å for the phenyl side-group. The discrepancy may be attributed to the higher thermal motion possible in the latter ring, which also accounts for the increased values of the positional standard deviations for C(15)-C(19). The hydrogen atoms do not deviate significantly from the planes described above. In both rings the average C-C distances (1.386 Å in the fused ring, 1.393 in the side group), and the average C–C–C angles $(120.0^{\circ} \text{ in})$ each case), agree well with expected values.

The five-membered ring C(9)-C(13) adopts the envelope conformation (Brutcher, Roberts, Barr & Pear-

Table 8. Valence angles, θ , in the asymmetric unit, together with estimated standard deviations, σ_{σ}

(a) Angles not involving hydroger	n atoms				
$\begin{array}{c} \text{End} &\text{apex}\text{end} \\ C(1) &N(2)C(3) \\ C(1) &C(10)C(9) \\ N(2) &C(10)C(10) \\ C(3) &N(2)C(20) \\ C(4) &C(11)C(10) \\ C(5) &C(6)C(7) \\ C(5) &C(6)C(7) \\ C(5) &C(12)C(13) \\ C(6) &C(7)C(8) \\ C(8) &C(13)C(9) \\ C(9) &C(10)C(11) \\ C(9) &C(10)C(11) \\ C(9) &C(10)C(13) \\ C(10) &C(9)C(13) \\ C(10) &C(9)C(13) \\ C(10) &C(9)C(14) \\ C(13) &C(9)C(14) \\ C(14) &C(19)C(18) \\ C(15) &C(16)C(17) \\ \end{array}$	θ 109.7° 110.3 111.3 112.0 114.4 120.6 120.8 120.8 129.8 103.0 122.4 102.0 102.7 118.2 120.5 119.6	$ \begin{array}{r} \sigma \\ 0.3^{\circ} \\ 0.3 \\ 0.3 \\ 0.3 \\ 0.3 \\ 0.4 \\ 0.3 \\ 0.4 \\ 0.3 \\ 0.4 \\ 0.3 \\ 0.4 \\ 0.3 \\ 0.4 \\ 0.3 \\ 0.4 \\ 0.3 \\ 0.4 $	Endapexend C(1)N(2)C(20) C(1)C(10)-C(11) N(2)C(3)C(4) C(3)C(4)C(11) C(4)C(11)-C(12) C(5)C(5)C(12) C(7)C(8)C(13) C(8)C(13)-C(12) C(9)C(13)-C(12) C(9)C(14)-C(19) C(10)C(9)C(14) C(11)C(15)-C(16) C(15)C(14)-C(19) C(16)C(17)-C(18)	θ 110.6° 111.8 108.8 12.7 116.8 128.8 118.9 119.1 119.9 110.1 118.7 116.8 110.2 120.2 119.0 120.2	$ \begin{array}{c} \sigma \\ 0.3^{\circ} \\ 0.3 \\ 0.3 \\ 0.3 \\ 0.3 \\ 0.3 \\ 0.3 \\ 0.3 \\ 0.3 \\ 0.3 \\ 0.3 \\ 0.3 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \end{array} $
C(17) $C(18)$ - $C(19)$	120.5	0.2			
$\begin{array}{c} \text{End} &\text{apex}-\text{end} \\ C(1) &C(10)-H(100) \\ N(2) &C(1)H(11) \\ N(2) &C(3)-H(31) \\ N(2) &C(3)-H(31) \\ C(3) &C(4)-H(40) \\ C(4) &C(3)-H(30) \\ C(4) &C(3)-H(30) \\ C(4) &C(3)-H(50) \\ C(7) &C(6)-H(60) \\ C(8) &C(7)-H(70) \\ C(10) &C(1)-H(10) \\ C(10) &C(9)-H(90) \\ C(11) &C(4)-H(40) \\ C(11) &C(4)-H(40) \\ C(11) &C(10)-H(100) \\ C(12) &C(10)-H(100) \\ C(13) &C(9)-H(90) \\ C(14) &C(15)-H(150) \\ C(15) &C(16)-H(160) \\ C(16) &C(17)-H(170) \\ C(16) &C(19)-H(180) \\ C(18) &C(19)-H(190) \\ H(10) &C(1)-H(11) \\ H(40) &C(4)-H(41) \\ H(200) & -C(20)-H(202) \\ \end{array}$	$\begin{array}{c} \theta \\ 109\cdot4^{\circ} \\ 104\cdot2 \\ 107\cdot4 \\ 106\cdot3 \\ 108\cdot5 \\ 115\cdot2 \\ 105\cdot3 \\ 118\cdot1 \\ 116\cdot1 \\ 117\cdot9 \\ 118\cdot0 \\ 104\cdot1 \\ 109\cdot6 \\ 111\cdot1 \\ 109\cdot6 \\ 109\cdot9 \\ 100\cdot100 \\ 100\cdot1000 \\ 1$	σ 2.4° 2.2 2.8 2.8 3.0 2.5 2.2 2.9 2.5 3.1 2.5 2.4 2.9 2.5 2.4 2.9 2.5 2.4 2.9 2.5 2.4 2.9 2.5 2.4 2.9 2.5 2.4 2.9 2.5 2.4 4.2 3.8 4.2	$\begin{array}{l} {\rm End}{\rmapex-end} \\ {\rm N(2)}{\rmC(1)}{\rmH(10)} \\ {\rm N(2)}{\rmC(3)}{\rmH(30)} \\ {\rm N(2)}{\rmC(20)}{\rm -H(200)} \\ {\rm N(2)}{\rmC(20)}{\rm -H(202)} \\ {\rm C(3)}{\rmC(4)}{\rmH(41)} \\ {\rm C(4)}{\rmC(3)}{\rmH(41)} \\ {\rm C(5)}{\rmC(6)}{\rmH(60)} \\ {\rm C(6)}{\rmC(7)}{\rmH(70)} \\ {\rm C(7)}{\rmC(8)}{\rmH(80)} \\ {\rm C(9)}{\rmC(10)}{\rm -H(10)} \\ {\rm C(10)}{\rmC(1)}{\rmH(11)} \\ {\rm C(10)}{\rmC(1)}{\rmH(11)} \\ {\rm C(10)}{\rmC(1)}{\rmH(11)} \\ {\rm C(10)}{\rmC(1)}{\rmH(11)} \\ {\rm C(12)}{\rmC(5)}{\rmH(50)} \\ {\rm C(13)}{\rmC(8)}{\rmH(80)} \\ {\rm C(14)}{\rmC(9)}{\rm -H(90)} \\ {\rm C(14)}{\rmC(19)}{\rm -H(190)} \\ {\rm C(16)}{\rm -C(15)}{\rm -H(150)} \\ {\rm C(17)}{\rmC(16)}{\rm -H(160)} \\ {\rm C(18)}{\rmC(17)}{\rm -H(170)} \\ {\rm C(19)}{\rmC(18)}{\rm -H(180)} \\ \\ {\rm H(30)}{\rmC(3)}{\rm -H(31)} \\ \\ {\rm H(200)}{\rm -C(20)}{\rm -H(202)} \\ \end{array}$		$ \sigma \\ 2.4^{\circ} \\ 2.7 \\ 3.0 \\ 2.7 \\ 2.7 \\ 2.7 \\ 2.7 \\ 2.4 \\ 3.1 \\ 2.7 \\ 2.2 \\ 2.6 \\ 2.8 \\ 2.7 \\ 2.9 \\ 2.7 \\ 2.9 \\ 2.7 \\ 2.9 \\ 2.7 \\ 3.2 \\ 2.8 \\ 3.3 \\ 3.3 \\ 2.9 \\ 3.8 \\ 4.0 \\ 4.1 $

son, 1959); atoms C(9,11,12,13) are strictly coplanar $(\langle |d| \rangle = 0.00068 \text{ Å})$ with C(10) 0.55 Å from this plane. This conformation ideally has C_s symmetry. Minimumenergy calculations (Pitzer & Donath, 1959; Hendrickson, 1961, 1963) have only been carried out on cyclopentane and have endorsed this conformation and have given theoretical optimum values for sp^3-sp^3 torsion angles (ω), and valence angles (θ); these values are compared with data from the present study in Table 9. The ring in this structure is neither cyclopentane nor, because of its fusion to a benzene ring, is it cyclopentene (for which no minimum-energy calculations seem to have been published), so one can hardly have expected such close agreement of the figures in Table 9. Nonetheless, the ring deviates surprisingly little from the ideal C_s symmetry: the major distortions are in ω_1, ω_5 , and θ_3, θ_4 , due to its fusion to two six-membered rings.

. .

Table 9. Comparison of torsion angles, ω^* , and valence angles, θ , for the five-membered ring in PIPH with values predicted from minimum-energy calculations for the C_s -(envelope)-form of cyclopentane

The parameters are shown below:

Parameter	This work	Pitzer & Donath [†] (1959)	Hendrickson (1961, 1963)
ω_1	32·82°	46·1°	41·7°
ω_2	-21.02	-28.6	-25.9
ω_3	-0.16	0.0	0.0
ω4	21.04	28.6	25.9
ω_5	-32.71	-46.1	-41.7
θ_1	102·99	100.4	101.7
θ_2	102.66	102.4	103.6
θ_3	110.19	105.6	106.0
θ_{4}	110.13	105.6	106.0
θ_5	101.96	102.4	103.6

Table 9 (cont.)

* Calculated using the bonding-array method (Allen & Rogers, 1969).

† Values quoted are those recalculated by Hendrickson (1961, 1963).

The heterocyclic ring adopts the chair conformation but is distorted from the symmetrical minimum-energy form for cyclohexane (Hendrickson, 1967) by ring fusion, and also by the presence of a nitrogen atom at position 2. Hendrickson's calculations give all valence angles as 111.6° and all ω -values as 54.4° ; in this work the former vary from 108.75 to 114.38° but average 111.45° , while the latter vary from 41.90 to 65.03° (average 53.66°).

The high accuracy of the intensity data allowed a complete refinement of all hydrogen atom positions [except for H(20)]. The successful refinement of the methyl hydrogen atoms [H(200-202)] was no doubt due to their proximity to hydrogen atoms at C(1), C(3), and to some bonding electron density in the sense $N \rightarrow Br$ (see below). To minimize non-bonded repulsions the substituents at N(2) and C(20) adopt the staggered conformation, as shown in the Newman projection (Newman, 1955) down this bond (Fig. 4); the relevant H–H and C–H non-bonded distances are also given.

The C-H bond lengths [Table 7(b)] have an overall average of 0.95 Å, some 0.13 Å shorter than values obtained spectroscopically or by neutron diffraction. This effect has been noted in previous X-ray studies (e.g. Marsh, 1958), and has been ascribed to the 'pulling' of the hydrogen K-electron density towards the heavier atom during bond formation. It has been shown (Tomiie, 1958) that the observed shift in the electron-density maximum (ca. 0.13 Å) is consistent with valence-bond calculations. The difficulty encountered in the refinement of H(20) is thus explicable since one would expect the H-electron to be more strongly attracted to N⁺ than towards a neutral atom, e.g. carbon. The assumption of spherical scattering factors gives a very poor approximation to the true distribution in this case.

Thus, while the C-H distances obtained here are in good agreement with other X-ray results, they do not represent true inter-nuclear separations. They have been grouped in Table 7(b) according to the degree of substitution, and differing hybridization states, of the carbon atoms. In general the trend in $\langle r_{C-H} \rangle$ -values follows that obtained spectroscopically (Sutton, 1965),

but further discussion would be profitless in view of the high σ_r -values obtained for these bonds in this study. The bond angles involving hydrogen atoms [Table 8(b)] are not significantly different from expected values. This is reasonable since, although the r_{C-H} values are foreshortened, the vector sense of the C-H bond remains unchanged.

Fig. 3 shows that a hydrogen bond is postulated between nitrogen and bromine; the valence angles,

> C(1) $-N(2)-Br = 110 \cdot 03^{\circ}$ C(3) $-N(2)-Br = 109 \cdot 34$ C(20) $-N(2)-Br = 105 \cdot 07$,

tend to support this proposition. Similar results have been reported for other quaternary amine hydrobromides and the N-Br distance in the present study (3·124 Å) is somewhat shorter than other quoted values, viz. 3·17 Å in 19-propylthevinol HBr (Van den Hende & Nelson, 1967) and in strychnine HBr.2H₂O (Peerdeman, 1956), 3·209 Å in DL- β -prodine hydrobromide (Ahmed, Barnes & Masironi, 1963), 3·26 Å in (+)hetisine HBr (Przybylska, 1963), 3·35 Å in D(-)isoleucine hydrobromide (Trommel & Bijvoet, 1954), and 3·38 Å in 11-aminoundecanoic acid HBr.6H₂O (Sim, 1955). The impossibility of fixing the position of the proton H(20) prevents discussion of the linearity of the bond.

Molecular overcrowding

A Dreiding model of the all-*cis* stereochemistry made prior to structure solution, indicated that the phenyl side-group must twist about the bond C(9)-C(14) in order to minimize H-H and C-H non-bonded inter-

Fig. 4. Newman projection down the bond C(20)–N(2) showing the staggered conformation of the substituents.

actions. This has been confirmed by the X-ray study (see Figs. 3 and 5): the angle between the mean planes through the fused-ring system and the phenyl group is 73°. The closest contacts involve H(150) and H(190), bonded to the nearest 'corners' of the phenyl ring, *viz*.

H(150) - H(10)	2·56 Å	H(190)-H(90)	2•33 Å
H(150) - H(80)	2.63	H(190) - H(100)	3.08
H(150)-C(13)	2.76	H(190) - C(9)	2.62
H(150) - C(9)	2.71		

If we take the van der Waals radii of hydrogen and carbon as 1.2 and 2.0 Å respectively (Pauling, 1965), the distances quoted are close to the appropriate radial sums. The orientation of the phenyl ring is, as expected, explicable in terms of the minimization of non-bonded interactions between the ring systems.

Molecular packing

The molecular packing projected down the a axis is shown in Fig. 5, in which the individual asymmetric units are identified by Roman numerals which have the following significance:

I	x	у	Z
II	x	$\frac{1}{2} - y$	$\frac{1}{2} + z$
III	х	y	$\overline{1} + z$
IV	х	$\frac{1}{2} - y$	$\frac{3}{2} + z$
V	\bar{x}	$\frac{1}{2} + y$	$-\frac{1}{2}-z$
VI	\bar{x}	$\tilde{1} - v$	Ī
VII	\bar{x}	$\frac{1}{2} + y$	$\frac{1}{2} - z$
VIII	x	$\overline{1} - y$	$\tilde{1}-z$
		-	

The zigzag formation of Br^- ions at any one level in x (e.g. Br_{II} , Br_{III} , Br_{IV}) is important in stabilizing the molecular arrangement. If we take the ionic radius of Br^- as 1.95 Å and the van der Waals radius of hydrogen as 1.2 Å (Pauling, 1965), then their sum (3.15 Å) is comparable with the intermolecular distances shown below:

BrIII	$-H(10)_{II}$	2·92 Å
	-H(202)II	2.81
	$-H(150)_{II}$	3.07
	$-H(60)_{I}$	3.35
	$-H(70)_{I}$	3.50
Br _{IX}	-H(170)vII	3.07
	$-H(40)_{VI}$	3.31
	$-H(41)_{VI}$	3.19

Fig. 5. The molecular packing in a-axis projection. The significance of the Roman numerals is given in the text.

The values above, taken together with the strong hydrogen bond, $Br_n - N(2)_n$, in any molecule (*n*), show the 'cementing' effect of the Br^- ions.

Additional stability is provided by the close approach of pairs of molecules (e.g. I and VI) across centres of symmetry; Fig. 6 shows the appearance of one such pair viewed along the c axis. The planes of the indene portions are parallel and the closest C-C contacts are:

$C(9)_{VI} - C(5)_{I}$	3·773 Å	$C(9)_{VI} - C(8)_{I}$	3·821 Å
$C(9)_{VI} - C(6)_{I}$	3.804	$C(9)_{VI} - C(12)_{I}$	3.715
$C(9)_{VI} - C(7)_{I}$	3.874	$C(9)_{V1}-C(13)_{I}$	3.742

The three *cis* protons of molecule (I), *i.e.* H(90, 100,110)_I protrude into this gap, opposite the fused benzene ring of molecule (VI). The closest contact, H(110)_I-H(80)_{VI} at 2.62 Å, is only slightly longer than twice the van der Waals radius of hydrogen (2.40 Å). Since all contacts occur twice, *i.e.* C(5)_I-C(9)_{VI} = C(5)_{VI}-C(9)_I, the stability introduced by this interaction is high.

Conclusion

Following the completion of this study we learned, by private communication, that the n.m.r. spectra had been successfully interpreted by Dr H. Booth of Nottingham University, England, who independently confirmed the all-*cis* stereochemistry. We are grateful to Dr Booth for permission to mention this result.

We wish to thank Dr P. R. Leeming of the Pfizer Co. (U.K.) Ltd. for suggesting the problem and for supplying the crystals. He and his colleagues are thanked for several helpful discussions. Computations were carried out at the University of London Institute of Computer Science and at the Imperial College Computer Unit; we gratefully acknowledge the facilities provided. We are indebted to Professor J. M. Stewart of the University of Maryland, U.S.A., for making available the X-ray 63 system of crystallographic computer programs. The Science Research Council are thanked for an equipment grant and for Research Studentships (to F.H.A. and P.G.H.T.).

References

- AHMED, F. R. & BARNES, W. H. (1963). Acta Cryst. 16, 1249.
- Ahmed, F. R., Barnes, W. H. & Masironi, L. Di M. (1963). Acta Cryst. 16, 237.
- ALLEN, F. H. & ROGERS, D. (1969). Acta Cryst. B25, 1326. BOOTH, A. D. (1948). Fourier Techniques in Organic Struc-
- ture Analysis. Cambridge Univ. Press.
- BRUTCHER, F. V., ROBERTS, T., BARR, S. J. & PEARSON, N. (1959). J. Amer. Chem. Soc. 81, 4915.
- BUSING, W. R. & LEVY, H. A. (1957). Acta Cryst. 10, 180. COPPENS, P., LEISEROWITZ, L. & RABINOVICH, D. (1965). Acta Cryst. 18, 1035.
- DAUBEN, C. H. & TEMPLETON, D. H. (1955). Acta Cryst. 8, 841.
- DAWSON, B. (1954). Acta Cryst. 17, 997.
- HAM, A. L. & LEEMING, P. R. (1969). J. Chem. Soc. (C), p. 523.
- HENDRICKSON, J. B. (1961). J. Amer. Chem. Soc. 83, 4537. HENDRICKSON, J. B. (1963). J. Amer. Chem. Soc. 85, 4059.
- HENDRICKSON, J. B. (1967). J. Amer. Chem. Soc. 89, 7036. International Tables for X-ray Crystallography (1962). Vol.
- III. Birmingham: Kynoch Press.

Fig. 6. Two molecules, related by a centre of symmetry, viewed along the c axis.

KILLEAN, R. C. G. (1967). Acta Cryst. 23, 54.	PLATI, J. T. & WENNER, W. (1955). J. Org. Chem. 20, 1
LEEMING, P. R. & HAM, A. L. (1968). Paper presented to	PRZYBYLSKA, M. (1963). Acta Cryst. 16, 871.
The Chemical Society Heterocyclic Group, London.	RÉRAT, C. (1960). Acta Cryst. 13, 459.
MARSH, R. E. (1958). Acta Cryst. 11, 654.	SIM, G. A. (1955). Acta Cryst. 8, 833.
NEWMAN, M. S. (1955). J. Chem. Educ. 32, 344.	SUTTON, L. E. (1965). Ed. Tables of Interatomic Dista
PAULING, L. (1965). The Nature of the Chemical Bond.	and Configurations in Molecules and Ions (lst Supplem
Ithaca: Cornell Univ. Press.	Special Publication No. 18. London: The Chemical
PEERDEMAN, A. F. (1956). Acta Cryst. 9, 824.	ciety.
PITZER, K. S. & DONATH, W. E. (1959). J. Amer. Chem.	Томие, Ү. (1958). J. Phys. Soc. Japan, 13, 1030.
Soc. 81, 3213.	TROMMEL, J. & BIJVOET, J. M. (1954). Acta Cryst. 7,

PLATI, J. T. & WENNER, W. (1950). J. Org. Chem. 15, 259.

- 412.
- ances ent). l So-
- 703.
- VAN DEN HENDE, J. H. & NELSON, N. R. (1967). J. Amer. Chem. Soc. 89, 2901.

Acta Cryst. (1971). B27, 1337

The Crystal Structures of Monoclinic 5-Ethylbarbituric Acid and 5-Hydroxy-5-ethylbarbituric Acid

BY B. M. GATEHOUSE* AND B. M. CRAVEN

Department of Crystallography, University of Pittsburgh, Pittsburgh, Pa. 15213, U.S.A.

(Received 21 August 1970)

The crystal data for the two forms of 5-ethylbarbituric acid (EBA) are (I) monoclinic (m.p. 194-196°), a = 11.151, b = 6.838, c = 9.536 Å, $\beta = 92^{\circ}21'$, space group $P2_1/c$ with four molecules per cell; (II) triclinic (m.p. 142–145°), a = 6.018, b = 5.344, c = 12.121 Å, $\alpha = 93^{\circ}38'$, $\beta = 105^{\circ}42'$, $\gamma = 94^{\circ}19'$, space group P1 or $P\overline{I}$ with two molecules per cell. The crystal structure of (I) is reported together with that of the oxidation product 5-hydroxy-5-ethylbarbituric acid (HEBA) which is monoclinic (m.p. $207-209^{\circ}$), a = 10.088, b = 6.298, c = 11.914 Å, $\beta = 99^{\circ}36'$, space group P_{21}/n with four molecules per cell. The X-ray diffraction data (Cu $K\alpha$ radiation) were obtained using an automatic four-circle diffractometer. All hydrogen atoms were found in difference Fourier syntheses. Full-matrix least-squares refinement gave R values of 0.06and 0.05 respectively. The rings in both EBA and HEBA have a 'flap' conformation with C(5) displaced from an otherwise nearly flat ring. In EBA the ethyl group is equatorial, while in HEBA it is axial. All NH and OH hydrogen bond donor groups form hydrogen bonds. The acidic hydrogen atom H(5) in EBA is not hydrogen bonded. The non-hydrogen-bonded carbonyl oxygen atom O(6) makes close approaches (2.93 and 3.04 Å) to carbonyl carbon atoms C(4) and C(6) of an adjacent molecule.

Introduction

The crystal structure of a monoclinic form of 5-ethylbarbituric acid (Fig. 1, R = H), hereafter EBA, has been determined for the purpose of a comparison of the molecular structure and stereochemistry of the parent acid with that of the carbanion which is found in the crystal structure of the 5/3 hydrate of the corresponding potassium salt (Gartland & Craven, 1970a).

At first, crystals of an apparent monohydrate of EBA were studied. However, a crystal structure determination, which is also reported in this paper, showed the material to be the oxidation product, 5-hydroxy-5ethylbarbituric acid (Fig. 1, R = OH), hereafter HEBA.

Subsequently, both a triclinic and a monoclinic form of EBA were crystallized. Crystal data are given for the triclinic form, but no further work on this crystal structure is intended.

Experimental

The synthesis of EBA was by condensation of the diethyl ester of ethylmalonic acid with urea in the presence of sodium ethoxide. The reaction mixture, after recrystallization from hot water in air contained the product together with what we have shown by crystal structure determination to be HEBA. The latter can also be formed by the oxidation of EBA with peroxide or dichromate ion (Aspelund, 1933).

The triclinic form of EBA (m.p. 142-145°C) does not appear to have been previously characterized. It was obtained by recrystallization from absolute ethanol. Recrystallization from isoamyl acetate solution converted the triclinic into the monoclinic form. Both forms were at least partially converted to HEBA when dissolved in water and left for several days in air.

The crystal data for the two forms of EBA and for HEBA are listed in Table 1. The melting points werg determined from single crystals of each material using a hot stage microscope. Crystal densities were meas-

^{*} On leave from the Chemistry Department, Monash University, Australia.